激光 第9卷第11期

溴化汞激光谱的研究

袁才来 上官诚 叶 超 窦爱荣

(中国科学院上海光机所)

提要:本文报导了用 193 毫微米 ArF 准分子激光光解 HgBr₂,得到 HgBr($B \rightarrow X$)跃迁 40 多条激光谱线的实验研究。

Study of HgBr laser spectra

Yuan Cailai, Shangguan Cheng, Ye Chao, Dou Airong (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: Over forty laser lines from HgBr $(B \rightarrow X)$ transition by photodissociation of HgBr, with an ArF excimer laser at 193 nm have been observed.

一、引 言

用 ArF 准 分子 激光光解 HgBr₂ 的实 验首先由 E. J. Schimitschek 报导^{LLI}, 他得 到了 HgBr($B^{9}\Sigma^{+} \longrightarrow X^{9}\Sigma^{+}$)502 毫微米和 504 毫微米两个谱带共 6 条激光谱线。W. T. Whitney^{L2I} 用电子 束 激发 方式得到 HgBr ($B^{2}\Sigma^{+} \longrightarrow X^{2}\Sigma^{+}$)499、502 和 504 毫微米三 个谱带的跃迁,但他没有研究谱带的详细结 构。我们在简讯^{L3I} 中曾报导了用较强的 ArF 准分子激光,在较高的 HgBr₂ 蒸气压下不但 获得了 HgBr($B \rightarrow X$)502 和 504 毫微米激 光,而且还获得了 Hg 原子 4047 Å 和 4358 Å 两条激光谱线,其中 Hg 原子 4047 Å 激光谱 线未见到过文献报导。我们详细研究了 HgBr 激光的光谱特性,得到了 499、502 和 504 毫 微米三个谱带共 40 多条激光谱线。 二、实验装置

实验装置示于图1。采用纵向光解激励 方式,其中ArF准分子激光器是一台紫外光 预电离快放电装置,可获得脉冲激光能量大 于200毫焦耳,激光波长1933Å。聚焦透镜 用远紫外石英材料制成,焦距54厘米。前反 射镜也用远紫外石英材料制成,在它的中心 镀有直径4毫米的4500Å到5500Å的全反 射膜。输出镜用玻璃制成,对1933Å不透 过,并镀有对4500Å到5500Å部分透过膜, 透过率为10%。此两反射镜构成对HgBr激 光的谐振腔。光解管由玻璃制成,直径17毫 米,长50厘米。在靠近泵浦激光端的布儒斯 特窗贴远紫外石英片。两端有水冷结构,以 防窗口污染。支管用于装HgBr₂样品,分别

收稿日期: 1981年12月24日。

用两个可控温度的炉子加温。用北京第二光 学仪器厂生产的 WPG-100 型一米光栅光 谱 仪拍摄激光谱线,使用 1200 条线/毫米的全 息光栅,线分辨率为 ~8 Å/毫米。

图1 实验装置示意图

三、实验结果和讨论

首先把光解管抽高真空,然后对支管加 温一段时间以除去 HgBr₂中的杂质,再充入 250 托 He 气。实验时把样品管炉子 加温到 180°C,此时 HgBr₂的蒸气压为 10 托,上面 炉子加温到 210°C 以防止蒸气的凝结。整个 光路需经过仔细调整,使得 ArF 泵浦光的光 轴与 HgBr 激光的光轴在同一轴线上。用几 十毫焦耳到 一 百毫焦 耳的 ArF 激光泵 浦 HgBr₂的 蒸气,可以得到 HgBr ($B\Sigma^+$ →

图 2 HgBr 激光辐射谱

 $X\Sigma^+$)的激光跃迁。用全息光栅光谱仪摄谱, 摄得的激光谱示于图 2。

波长测量精度为 0.1 Å, 共得到 40 多条 激光谱线。如按最强的 5019.8 Å 谱 线强度 为 100, 各条谱线的波长及其相对强度列于 表 1。实验所得到的谱线还稍多些,但由于它 们的强度太弱就不列入了。

表1 HgBr(B→X)激光波长表

谱带	波长	相	对	谱带	波长	相	对
$(\nu' \sim \nu'')$	(Å)	强	度	$(\nu' \sim \nu'')$	(Å)	强	度
0~21	4984.9	较强		文本	5027.3	36	
	4986.2	弱		2 01	5028.5	34 22	
	4987.2	较强			5029.2		
	4988.3	弱		Sel Ser	5031.5	22	
0~22	5011.8	8		Mel Sales	5034.6	16	
	5012.4	14		and second	5035.0	19	
	5013.0	23			5035.9	62	
	5013.4	25			5036.4	60	
	5013.9	27			5036.9	63	
	5014.2	21		0	5037.3	75	
	5015.0	36			5037.6	82	
	5015.4	4	£1		5038.0	8	6
	5016.4	70 72 79		3~26	5038.6	83	
	5016.9				5038.9	82	
	5017.4				5039.4	75	
	5018.4	1	78	-	5040.3	6	6
	5019.8	100 98 99 72		行代了 们在代刊	5040.9	78	
	5022.0				5041.4	65	
	5022.6				5041.6	58	
	5024.3				5041.9	38	
	5025.0	*3	76	+3	5042.8	3	8
	5025.6	74		ECS 21-4	4043.1	4	2
	5026.2	1	59	and the state	5044.9	4	2
	5026.8	57		梁 田朝	11 - CO	3420	

为证明摄得的谱线是激光谱线,不是荧 光谱线,有以下判据。首先我们所用摄谱仪 离输出镜很远,在2米以上,且把摄谱仪的第 一、第二聚焦镜去掉。说明光束具有良好的 方向性。第二,激光谱与荧光谱有显著差别 (参阅文献[3]和图2),并且摄谱所用曝光次 数小于10次,摄谱仪狭缝5微米,与荧光摄 谱条件(曝光200次,狭缝200微米左右)有 明显不同。第三,光束具有明显的振荡特性,

. 696 .

在调偏其中一个反射镜时,在上述同样实验 条件下曝光100次以上,在谱板上没有看到 任何谱线。

用 ArF 准分子激光光解 HgBr₂ 的 离解 和复合过程如下:

HgBr₂+hν(193 毫微米) → HgBr($B^{2}\Sigma^{+}$)+Br HgBr($B^{2}\Sigma^{+}$)→ HgBr($X^{2}\Sigma^{+}$) +hν(499, 502, 504 毫微米)

 $\operatorname{HgBr}(X^{2}\Sigma^{+}) + \operatorname{Br} + M \longrightarrow \operatorname{HgBr}_{2}$ 其中M代表He气。复合时间约为10微 秒。 HgBr₂ 的吸收峰为 198 毫微米, 正好落 在 ArF 的激光波段(193 毫微米), 吸收截面 $\sigma_{\text{max}} = 1.32 \times 10^{-17} \ \text{mess}^{\text{[4]}}, \ \text{HgBr}_2(1^1 \Sigma_a^+ \rightarrow$ 1¹Σ⁺)的能量间距为 208 毫微米^[4], 约 6.3 电 子伏, 而ArF激光光子的能量为6.4 电子 伏,因而ArF准分子激光对 HgBr2 的光解 激发是较为有效的。HgBr2 吸收 193 毫微米 光子后激发到 HgBr₂(1¹ Σ_{4}^{+})态, 进而 HgBr₂ $(1^{1}\Sigma_{u}^{+})$ 态分解为 HgBr $(B\Sigma^{+})$ 态和 HgBr (XΣ+)态,它们都是束缚态,其束缚能为0.7 电子伏^[5]。[5]已指出 Br 的两种同位素 Br⁷⁹。 Br⁸¹的天然丰度为50.54%和49.46%,同 位素位移~6Å。据[6]给出的数据,我们可 以计算 HgBr 两种同位素的 跃迁波长。如 HgBr⁸¹(B→X) 跃迁波长可以由下式计算:

 $\nu(\blacksquare \%^{-1}) = 23485 + 135.1V' - 0.275V'^{2}$

-186.47V"+0.967V"²+0.009V"³ 其中V'和V"分别表示上能级和下能级不 同的振动量子数。据上式计算可得 HgBr⁸¹ (0-21) 跃迁为4980.3Å, HgBr⁸¹(0~22) 跃迁为5013.4Å, HgBr⁸¹(3-26) 跃迁为

(上接第702页)

改善 A 型腔调频范围的方法比较简单, 例如将图 1 中全反镜 M₁ 改为全反式布儒 斯 特棱镜即可。

参考文献

[1] M. G. Littman; Opt. Lett., 1978, 3, No. 4, 138.

5037.4Å。与我们观察到的三个振动带是符 合的。HgBr⁷⁹($B \rightarrow X$)跃迁可以由类似的公 式计算。这样,在不考虑同位素转动效应 时,可以算得 HgBr($B \rightarrow X$)跃迁(0-21)带的 同位素位移约8.7Å,(0-22)带同位素位移 约9.2Å,(3-26)带的同位素位移约10Å。 由于没有标准的同位素谱线图,所以在目前 我们不能判别某一条谱线是属于那一个同位 素的,也不能确定某一条谱线的J值。

根据 HgBr₂ 各能级的能量以及激光光 解原理,上述 HgBr₂ 被 ArF 激光光解,得到 HgBr 的激发态,进而产生激光跃迁的能级 结构示意图示于图 3。

激光的势能曲线图

参考文献

- [1] E. J. Schimitschek et al.; Appl. Phys. Lett., 1977, 31, No. 9, 608.
- [2] W. T. Whitney; Appl. Phys. Lett., 1978, 32, 239.
- [3] 袁才来等;《激光》, 1981,8, No. 4, 62.
- [4] W. R. Wadt; J. Chem. Phys., 1980, 72, No. 4, 2469.
- [5] J. H. Parks; Appl. Phys. Lett., 1977, 31, 297.
- [6] K. Wieland; Z. Elektrochem., 1960, 64, 761.
- [2] I. Shoshan, U. P. Oppenheim; Opt. Commun., 1978, 25, No. 3, 375.
- [3] S. Saikan; Appl. Phys., 1978, 17, 41~44.
- [4] M. K. Iles et al.; Opt. Commun., 1980, 35, No. 1, 133.

· 697 ·

- [5] 许祖彦等; 《物理学报》, 1981, 30, No. 6, 820.
- [6] 何迪洁等; 《激光》, 1981, 8, No. 1, 49.